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Abstract

Stationary onset of convection due to surface tension variation in an unbounded multicomponent ~uid layer is
considered[ Surface deformation is included and general ~ux boundary conditions are imposed on the stratifying agencies
"temperature:composition# disturbance equations[ Exact solutions are obtained to the general N!component problem
for both _nite and in_nitesimal wavenumbers[ Long wavelength instability may coexist with a _nite wavelength instability
for certain sets of parameter values\ often referred to as frontier points[ For an impermeable:insulted upper boundary
and a permeable:conductive lower boundary\ frontier boundaries are computed in the space of Bond number\ Bo\ vs
Crispation number\ Cr\ over the range 4×09−6 ¾ Bo ¾ 0[ The loci of frontier points in "Bo\ Cr# space for di}erent
values of N\ di}usivity ratios\ and Marangoni numbers collapsed to a single curve in "Bo\ D	Cr# space\ where D	 is a
Marangoni number weighted di}usivity ratio[ Þ 0888 Elsevier Science Ltd[ All rights reserved[

Nomenclature

Bo Bond number\ r`d1:s
Cr Crispation number\ mDÝ 0:sd
d thickness of layer
DÝ k component di}usivity
Dk di}usivity ratio\ DÝ k:DÝ 0

D	k Mak weighted average of di}usivity ratios
` gravitational acceleration
hk disturbance surface conductance
Mak Marangoni number\ gkDSÝkd:mDÝ k

Nuk Nusselt number\ "hkd:DÝ k#
p pressure
Pr Prandtl number n:DÝ 0

R correlation coe.cient
sk kth disturbance stratifying agency
SK kth stratifying agency
ui disturbance velocity
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u¹ basic state velocity
w normal mode velocity
xi Cartesian coordinates[

Greek symbols
a wavenumber
gk kth surface tension gradient\ 1s:1SÝk

z free surface deformation
m dynamic viscosity
n kinematic viscosity
s surface tension
x normal mode stratifying agency[

Superscript
l lower boundary at x2 � 9
u upper boundary at x2 � 0
Ð basic state variable[

Subscript
c critical value
fp frontier point
i\ j Cartesian coordinate indices\ 0\ 1\ 2
k associated with kth component
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½ dimensional variable[

0[ Introduction

Multicomponent onset of convection is important in
many naturally occurring phenomena and technological
processes[ Examples include] convection in stars\ dynam!
ics within the earth|s core\ oceanography\ solar
ponds\ coating:drying processes and crystallization:
solidi_cation ð0Ð5Ł[ Various extensions of Rayleigh|s
normal mode analysis ð6Ł to multicomponent systems
have contributed to the characterization of physical con!
ditions and ~uid properties that are necessary for con!
nective onset to occur\ and the nature of the resulting
instability[ Double di}usive systems where convection
occurs due to density variations have received the greatest
attention to date ð0Ð2\ 7Ł\ although results for three or
more components have also been reported ð0\ 3\ 5Ł[

Under certain conditions such as thin liquid _lms or
microgravity\ surface tension variations along a free sur!
face may also induce convection[ Onset of convection
due to surface tension variation\ also known as the Mar!
angoniÐBenard problem\ was _rst examined by Pearson
ð8Ł with reference to drying paint _lms[ The importance of
surface deformation to the MarangoniÐBenard problem
was established by Scriven and Sternling ð09Ł while grav!
ity e}ects and overstability associated with a deformable
free surface were investigated by Smith ð00Ł\ Takashima
ð01\ 02Ł\ and Perez!Garcia and Carneiro ð03Ł[ The Benard
problem has been extensively studied and a signi_cant
portion of the immense body of literature for the single
component Benard problem has been summarized by
Koschmieder ð04Ł0[ Recent reviews of thermocapillary
instabilities\ including the MarangoniÐBenard problem
are given by Davis ð05Ł and Legros et al[ ð06Ł[

In connection with microgravity materials processing
applications\ McTaggart ð07Ł considered the stability of
double di}usive ~uid layer with a ~at interface subject
to surface tension variations at the free surface[ In the
presence of both buoyancy and surface tension variation
e}ects\ Chen and Su ð08Ł studied the double di}usive
layer where both temperature and concentration gradi!
ents are imposed across the layer[ In subsequent exper!
imental work\ Tanny et al[ ð19Ł modi_ed the linear stab!
ility analysis of Chen and Su ð08Ł to account for a basic
state with a non!linear concentration pro_le[ The exper!
imental and theoretical results were found to be in very
good agreement ð19Ł[ Building on the work of Scriven
and Sternling ð09Ł\ Smith ð00Ł\ and McTaggart ð07Ł\ the
double di}usive problem with deformation of the free

0 According to Koschmeider ð04Ł\ more than 499 "single com!
ponent# Benard related publications were written prior to 0882[

surface was examined by McCaughan and Bedir ð10Ł who
neglected gravity e}ects[ A recent numerical study by
Char and Chiang ð11Ł con_rms the earlier double di}us!
ive works ð07\ 08Ł and also examines the e}ects of defor!
mation in the combined presence of gravity and surface
tension forces[ In Char and Chiang|s investigation as
well as the single component study by Perez!Garcia and
Carneiro ð03Ł a comprehensive set of stationary and oscil!
latory results are presented\ and the existence of a single
frontier point is identi_ed[ To date\ only single and two
component "double di}usive# systems have been con!
sidered when convective onset is due to surface tension
variation[

We focus on the stationary stability behavior of a
multicomponent system applying traditional methods of
analysis that lead to exact solutions for a system with an
arbitrary number of components\ or N!components[ One
intrinsic value of the analytical solution is the wealth of
physical insight gained from examination of the solution
form and its limiting behavior[ With the aid of idealized
boundary conditions\ exact solutions have resulted in
greater physical understanding of single component and
multicomponent buoyancy driven problems as well as
single and double di}usive surface tension driven prob!
lems ð0Ð00\ 07\ 10\ 12Ð15Ł[ Furthermore\ analytical solu!
tions are critical for comparison and validation of
numerical computations which will ultimately be used to
analyze the behavior of more complex systems ð4Ł[ In
addition to further validation of published results\ we
_nd that recently reported stationary stability results for
the surface tension problem can be obtained directly from
our exact solutions[ These solutions also permit straight!
forward computation of the boundary that separates the
long and _nite wavelength instabilities\ denoted as a fron!
tier boundary\ in appropriate parameter space[

The onset of convection due to surface tension vari!
ations in a multicomponent ~uid is considered in this
study[ Deformation of the free surface is permitted and
the gravity term is also included in the normal stress
condition[ Mixed ~ux boundary conditions are applied
to the stratifying agency "heat and:or composition# trans!
port equations at both bounding surfaces[ The analysis
is con_ned to stationary onset of convection and an exact
solution is derived for the problem with N!stratifying
agencies[ Cross!di}usive e}ects of interest in recent
binary ~uid investigations ð7\ 13\ 15\ 16Ł are neglected[
Special cases of the solution are treated for boundary
conditions typically applied in the literature ð8Ð03\ 07Ð
11Ł and in the limit of in_nitesimal wavenumber[

Spatial structures or normalized eigenvectors at neu!
tral stability are brie~y examined[ Stationary stability in
the multicomponent problem with surface de~ection and
gravity is explored and presented in the context of a single
component system[ Most signi_cantly\ frontier points
and frontier boundaries\ and the conditions for which
they exist\ are examined in parameter space for a multi!
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component system[ Frontier boundaries are computed
over the Bond number range 4×09−6 ¾ Bo ¾ 0\ extend!
ing the previously reported range which was a single
frontier point at Bo � 9[0 ð03\ 11Ł[ Although the frontier
points in "Bo\ Cr# space are found to be functions of Mak

and Dk in a multicomponent system\ they collapse to a
single frontier boundary curve in "Bo\ D	Cr# space[

1[ Mathematical formulation

We examine a ~uid layer that is unbounded in its lateral
dimensions\ xÝ0\ and xÝ1\ and is of dimension 9 ¾ xÝ2 ¾ d
with a deformable free surface located at xÝ2 � d[ The
velocity basic state is quiescent\ UÝ � 9[ The overbar
denotes a basic state variable while the underscore tilde
denotes dimensional quantities[ A strati_ed basic state is
imposed on the composition and:or temperature vari!
ables that takes the form]

SÝk"xÝ2# � SÝk"9#−DSÝ
xÝ2

d

where DSÝk � SÝk"9#−SÝk"d#[ Therefore\ following ð3Ł and
ð5Ł\ we denote Sk as the kth stratifying agency "com!
position or temperature# of a ~uid layer consisting of N!
stratifying agencies[

The linearized disturbance momentum and kth strati!
fying agency transport equation are given by eqns "0#
and "1#[

1uÝi

1tÝ
� −

0
r

1pÝ
1xÝ i

¦n
11uÝi

1xÝ j1xÝ j

"0#

1sÝk

1tÝ
� DÝ k

11sÝk

1xÝ j1xÝ j

¦
DSÝk

d
uÝ2 "1#

for] i\ j � 0\ 1\ 2 and k � 0\ 1\ [ [ [ \N

The disturbance variables\ u\ s\ and p are velocity\
component and pressure\ respectively\ while the physical
properties\ density\ kinematic viscosity and di}usivity are
denoted as r\ n\ DÝ k[ The stratifying agency with the largest
DÝ is chosen as the k � 0 component[ Surface tension\ s\
is assumed to vary linearly with\ SÝk as\

s � sref¦ s
N

k�0

1s

1SÝk

"SÝk−SÝ ref#[

The boundary conditions are given by eqns "2#Ð"7#[
At xÝ2 � 9\

uÝi � 9 "2#

0DÝ k

1sÝk

1xÝ2

−hÝ"l#
k sÝk1bxÝ2�9

� 9 "3#

At xÝ2 � d

dzÝ
dtÝ

� uÝ2 "4#

m 0
1uÝ2

1xÝ l

¦
1uÝl

1xÝ21� − s
n

k�0

gk 0
1sÝk

1xÝ l

¦
1SÞÝk

1xÝ2

1zÝ
1xÝ l1 "5#

−pÝ¦rgzÝ¦1m
1uÝ2

1xÝ2

� s
11zÝ

1xÝ21xÝ2

"6#

0DÝ k

1sÝk

1xÝ2

¦hÝ"u#
k 0sÝk¦

1SÞÝk

1xÝ2

zÝ11bxÝ2�d

� 9 "7#

where l � 0\ 1 "lateral directions only# and
k � 0\ 1\ [ [ [ \N[

A no!slip!impenetrable surface is imposed at xÝ2 � 9\
eqn "2#[ Mixed disturbance ~ux conditions\ eqns "3# and
"7# are imposed at both the upper and lower boundaries
on the kth stratifying agency transport equation\ where
hÝ"u#

k and hÝ"l#
k are the disturbance heat or mass transfer

coe.cients or surface conductances ð8\ 09\ 07Ł at the
upper and lower surfaces\ respectively[ The remaining
boundary conditions at xÝ2 � d are the kinematic
conditions\ eqn "4#\ tangential stress conditions\ eqn "5#
and normal stress condition\ eqn "6#[

After eliminating the perturbation pressure ð8Ð00\ 10\
12Ł\ the disturbance equations are nondimensionalized
using reference values\ d\ DÝ 0:d\ d1:DÝ 0\ DSÝk\ DÝ 0 for length\
velocity\ time\ kth component\ and di}usivities\ respect!
ively[ Solutions are then assumed of the form]
"u\ sk\ z# � "w"x2#\ xk"x2#\ z# elt¦i"a0x0¦a1x1# with the result!
ing normal mode equations given by eqns "8# and "09#
below\ where a1 � a1

0¦a1
1[

l"D1−a1#w � Pr"D1−a1#1w "8#

lxk � Dk"D1¦a1#xk¦w "09#

Normal mode boundary conditions are]
At x2 � 9\

w"9# � 9 "00#

Dw"9# � 9 "01#

Dxk=x2�9−Nu"l#
k xk=x2�9 � 9 "02#

At x2 � 0\

lz � w"0# "03#

"D1¦a1#w � −a1 s
N

k�0

DkMak"xk−z# "04#

l
Dw
Pr

�"D2−2a1D#w−
0
Cr

"a3¦Boa1#z "05#

Dxk=x2�0¦Nu"u#
k "xk−z#=x2�0 � 9 "06#

The surface Nusselt numbers1 at the upper and lower
boundaries\ Nu"u#

k and Nu"l#
k \ are de_ned as hÝ"u#

k d:DÝ k and

1 In single component studies Nus are also denoted as surface
Biot numbers\ and in double di}usive analyses\ often denoted
as surface Nusselt and surface Sherwood numbers[
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Table 0
Solution coe.cients\ b0k and b1k\ for limiting disturbance ~ux boundary conditions

Disturbance ~ux boundary conditions b0k b1k

"i# "Nu"l#
k \"Nu"u#

k # : "�\ 9#
0

a1 02¦
csch a sech a"a cosh a− sinh a#1

a 1 b1k � 9

"ii# "Nu"l#
k \"Nu"u#

k # : "9\ 9#
2

a1

a coth a"a coth a−1#¦0

a2

hÝ"l#
k d:DÝ k\ respectively\ while other dimensionless par!

ameters are given in the Nomenclature[2

2[ Results and discussion

2[0[ Spatial shapes and normalized ei`enfunctions

For stationary stability\ l � 9\ thus solutions for w"x2#\
xk"x2# and z\ can be deduced from the above set of equa!
tions[ After applying boundary conditions "00#\ "01# and
"03# the solution for the disturbance velocity\ w"x2#\ in
terms of a single undetermined coe.cient\ a0\ eqn "07#\
is given[ The solution for the kth disturbance stratifying
agency\ xk\ eqn "08#\ contains two coe.cients\ b0k and
b1k\ in addition to the undetermined coe.cient\ a0[ The
~ux conditions\ eqns "02# and "06#\ are applied to deter!
mine b0k and b1k\ and a0 is factored from all terms[ The
deformation solution\ z\ eqn "19#\ determined from eqn
"05# also contains the undetermined coe.cient\ a0[

w"x2# � a0 ð"0¦"a coth a−0#x2# sinh ax2−ax2 cosh ax2Ł

"07#

xk"x2# �
a0

3Dk 0b0k sinh ax2¦b1k cosh ax2

¦0
"a coth a−0#

a1
x2¦"x2#11 sinh ax2

−
0
a

"2x2¦"a coth a−0#"x2#1# cosh ax21 "08#

z � −a0

1Cra1 cshc"a#

Bo¦a1
"19#

Aside from the fact that spatial shapes\ w and xk\ need be
determined as part of a parameterized stationary stability
solution\ they also provide physical insight to the ~ow
behavior along the stationary stability boundary[ Inspec!

2 If the kth stratifying agency is temperature\ the kth transport
equation is the energy equation and Nuk is de_ned as
Nuk � hkd:rcpDÝ k[

tion of eqn "07# immediately reveals that a0 a}ects only
the magnitude of w"x2#\ but not its normalized eig!
envector or spatial shape[ The spatial shape of w"x2#
is therefore invariant to all ~ow parameters with the
exception of a\ even for a multicomponent system with
an arbitrary number of stratifying agencies[ We observe
that the stationary spatial shape of xk"x2#\ eqn "08#\ is
independent of all Dk in an N!stratifying agency system
as well as independent of a0[ However\ because b0k and
b1k are\ in general\ functions of the a\ Cr\ Bo\ Nu"l#

k \ and
Nu"u#

k \ these parameters in~uence both magnitudes and
spatial shapes of xk"x2#[

The invariance of w"x2# is meaningful in the following
special but important cases\ although it is less important
to the general problem since the critical wavenumber is
dependent on the other parameters which in turn a}ects
the onset spatial shape[ Attention is therefore focused on
the important case of an impermeable "or insulated#
upper surface\ Nu"u#

k : 9\ for all k\ and we consider the
following two limiting disturbance ~ux conditions at
x2 � 9] permeable "or conductive#\ Nu"l#

k : �\ and imper!
meable "or insulated#\ Nu"l#

k : 9 for all k\ k � 0\ 1\ [ [ [ \N[
Both limits are of physical signi_cance and reduce to the
two most important single and double di}usive cases
treated in the literature ð8Ð03\ 07Ð11Ł[

In both limits of Nu"l#
k \ the coe.cients\ b0k and b1k are

given in Table 0 and are shown to reduce to functions
solely of wavenumber\ a[ Consequently\ the stationary
spatial shapes of both w"x2# and xk"x2# are invariant
with Mak\ Dk\ Cr and Bo[ Moreover\ this property of
invariance also applies to any combination of the two
~ux limits of a multicomponent system with N!stratifying
agencies[ Therefore if the spatial shapes or normalized
eigenvectors are known for a given a\ for example\ along
a stationary stability boundary in "a\ Mak# space\ for one
parameter set of "Ma0\ D0\ Cr\ Bo# " for l � k# then the
normalized eigenvectors are the same for any other set of
"Ma0\ D0\ Cr\ Bo#[ As observed in Section 2[2 on frontier
points\ the shape of the neutral stability curve is dras!
tically in~uenced by Cr and Bo for a typically less than 1\
yet the spatial shapes of the disturbance variables remain
unchanged at a given a[ For both limiting cases\ the
normalized eigenvectors of xk"x2# are identical for all k\
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however\ in the following section\ we show that neutral
stability boundaries in the presence of deformation are
in~uenced by Dk[

2[1[ Stationary solution and limitin` cases

Substituting the spatial shapes\ eqns "07# and "08#\ into
the tangential stress equation\ eqn "04#\ yields an exact
solution for stationary stability of a multicomponent
system[ The use of general disturbance ~ux conditions
allows for _nite Nuk values at both boundaries and also
eliminates the need for separate solutions for di}erent
limiting cases ð8Ð03\ 07Ð11Ł which becomes impractical
as the number of stratifying agencies\ N\ increases[ A
tedious solution process remains unavoidable\ par!
ticularly with the incorporation of mixed ~ux conditions
at both boundaries[ However\ after substantial manipu!
lations\ a surprisingly concise solution emerges as

*ÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐ

7a0a−
0
1
sinh 1a1¦ s

N

k�0

Mak

"sinh1 a tanh a−a2#Nu"l#
k ¦a""a1¦sinh1 a#−"1¦a1#a tanh a#¦

7CrDka
4"a tanh a¦Nu"l#

k #

"Bo¦a1#

"a1¦Nu"l#
k Nu"u#

k # tanh a¦a"Nu"u#
k ¦Nu"l#

k #
� 9

"10#
*ÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐ

In this form it is easy to see that the singly di}usive
solutions of ð8\ 09 and 01Ł\ the doubly di}usive solutions
of ð07\ 10Ł and previously unreported solutions for three
or more stratifying agencies are obtained for N � 0\
N � 1 and N − 2\ respectively[

We again refer to the two limiting cases presented
in Table 0\ with the understanding that other signi_!
cant parameter limits could also be explored[ In both
limits\ Nu"l#

k : � and Nu"l#
k : 9\ the resulting multi!

component solutions can be recast as e}ective single
component solutions[ Equation "11# corresponds to
Nu"l#

k : � " for all k# and eqn "12# corresponds to
Nu"l#

k : 9\ " for all k#[

MaS �

7a10a−
0
1

sinh 1a1
a2− sinh1 a tanh a−

7a4CrD	

a1¦Bo

"11#

MaS �

7a1 0a−
0
1

sinh 1a1
a2¦1a−a1 coth a−

0
1

sinh 1a−
7a4CrD	

a1¦Bo

"12#

where MaS denotes the summation of the Mak\ and D	 is
a Marangoni number weighted average of the di}usivity
ratios\ Dk]

MaS � s
N

k�0

Mak\ and D	 �

s
N

k�0

MakDk

MaS

The above formulations demonstrate the equivalence
between the multicomponent solution for arbitrary N!
stratifying agencies and the single component problem[
The single component formulations\ eqns "11# and "12#\
are insightful\ although it is typically more convenient to
compute neutral stability values of Maj " j � k# directly
from eqn "10#[ They also play a central part in our exam!
ination of frontier point behavior in multicomponent
systems[

For a ~at interface\ Cr � 9\ the D	 term is eliminated\
and it is apparent that the Mak are additive with their
sum\ MaS\ _xed for given a[ In these special cases\ we
note that similar conclusions also follow for the ~at inter!
face from inspection of the normal mode equations for

l � 9[ Consistent with the single component layer\ mul!
ticomponent critical values\ "ac\ "MaS#c#\ are "0[882\
68[593# and "9\37# for the respective Table 0 cases[ This
is a direct generalization of the conclusion reached by
McTaggart ð07Ł for the double di}usive layer with a ~at
interface[ In their double di}usive analysis\ Char and
Chiang ð11Ł report oscillatory neutral stability results for
D1 � 9[93 while stationary stability results are reported
for D1 � 0[ Including the e}ect of surface deformation\
they note an additive or direct reinforcement nature of
Ma0 and Ma1 in the case of stationary onset[ Their obser!
vation is consistent with our results for D1 � 0\ but it
fails to hold when D1 � 0[ For D1 � 0\ the relationship
between Ma0 and Ma1 is modi_ed by the presence of D1

in the de~ection "Cr# term of eqns "10# and "11# for
stationary onset[ In a multicomponent layer\ N − 1\ we
_nd that Char and Chiang|s direct reinforcement of Mak

similarly holds when Dk � 0 " for all k#[ However\ in the
presence of surface de~ection\ D	 is no longer negligible\
as variations among Dk can have a profound e}ect on
neutral "stationary# stability\ especially for in_nitesimal
wavenumber[

Although the neutral stability solutions\ eqns "11# and
"12#\ are of indeterminant forms at a � 9\ the limit
a : 9 merits examination because onset of convection
often occurs at an in_nitesimal wavenumber for various
boundary ~ux and surface deformation parameter values[
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Characterization of the stability behavior in this limit is
also required for investigating frontier point boundaries[
Successive application of L|Hospital|s rule to eqns "11#
and "12# yield the following stationary stability relations
for a multicomponent layer in the limit a : 9[

1
2

Bo
Cr

� MaSD	 "for Nu"l#
k : �\ all k# "13#

1
2

Bo
Cr

�
D	

0−
MaS

37

"for Nu"l#
k : 9\ all k# "14#

For a singly di}usive layer\ eqn "13# agrees with the small
wavenumber results of ð00\ 02\ 13Ł\ Ma0 � 1:2 Bo:Cr\
and further con_rms the numerical results of ð03\ 11Ł[
Extending the analysis to the other ~ux limit\ Nu"l#

k : 9\
we _nd that onset of convection always occurs in the
limit a : 9 as for a ~at interface and that eqn "14# yields
the multicomponent exact solution for the critical
value"s# "Mak#c[ For example\ Mac is given by
Ma0 � 37"0¦61 Cr:Bo#−0 for a singly di}usive layer[ In
both cases\ Ma0 is a function of a single parameter\ the
ratio "Cr:Bo# in the a : 9 limit[ For a permeable "con!
ductive# surface at x2 � 9\ Ma0 takes on values\
9 ³ Ma0 ³ �\ over the range 9³ Bo:Cr ³ � while Ma0

is bounded in the interval 9 ³ Ma0 ³ 37 for an imper!
meable "insulated# lower surface for the previous Bo:Cr
range[

Using the single component problem for validation\
Char and Chiang ð11Ł con_rmed that their small wav!
enumber neutral stability results approached the ana!
lytical results reported in ð00\ 14Ł for the limit a : 9[
Their double di}usive stationary results for nonzero Ma1

"−099 and 099# also agree with the exact solution\ eqn
"13#\ for the limit a : 9\ although the relationship\
Ma0c¦Ma1c � Mac\ holds only for D1 � 0\ as discussed
for the _nite wavenumber case[ We _nd from eqn "13#
that the exact double di}usive solution for Ma0 in the
limit a : 9 is expressed as]

Ma0 �
1
2

Bo
Ca

−D1Ma1

where the stationary values of Ma0 are translated up or
down by the product "D1Ma1#[ When stationary onset
occurs at _nite wavenumber\ e[g[ a ¼ 1\ the deviation
from ignoring the Dk dependence is often small[ When
onset occurs at in_nitesimal wavenumber\ large errors in
Ma0 are likely for nonzero Ma1[ For Nu"l#

k : 9 an exact
relation for Ma0 "or other Mak# involving N!stratifying
agencies is similarly obtained from eqn "14#[

2[2[ Frontier points

For certain parameter value sets\ onset of convection
can occur simultaneously at two di}erent modes[ This
set of parameters where two spatial modes can coexist
during onset has more recently been referred to as a

frontier point ð03\ 11Ł[ Dynamics in the region of a fron!
tier point is anticipated to be complex[ For example\
Proctor and Jones ð17Ł observed interesting dynamical
behavior when two modes compete in destabilizing a two!
~uid system while similar nonlinear analyses are ident!
i_ed in ð03Ł[ A practical consequence of identifying fron!
tier points or frontier boundaries is that a quantitative
criterion is then established for determining which of the
competing modes occurs at convective onset for a given
set of parameter values[ In the ensuing analysis this para!
meter set is "a\ Mak\ Dk\ Cr\ Bo#[ The component ~ux
conditions given in Table 0 are again applied[ Because
stationary onset always occurs in the limit a : 9 for
Nu"l#

k : 9 this case need not be considered any further[
The case of Nu"u#

k : 9 and Nu"l#
k : �\ for all k\ has

received recent attention ð03\ 11Ł\ and a single frontier
point "Bo\ Cr# has been identi_ed in these studies[

The existence of frontier points is con_rmed by the
neutral stability curves for four di}erent "Bo\ D	Cr# values
shown in "a\ MaS# space in Fig[ 0[ For "Bo\ D	Cr# values
of "9[94\ 9[9995# and "9[94\ 9[9992# convective onset
occurs at in_nitesimal and _nite wavenumber\ a ¼ 1\
respectively[ Convective onset occurs simultaneously at
two di}erent spatial modes for the two remaining curves\
i[e[ frontier points exist at "Bo\ D	Cr# values of "9[94\
9[9993101# and "9[4\ 9[993345#[ Decreasing D	Cr for con!
stant Bo leads to stabilization at small wavenumbers
which is consistent with the view ð00\ 03\ 11Ł that increas!
ing Bo for a given Cr is stabilizing[ In Fig[ 0\ we _nd that
"D	Cr#fp increases with increasing Bo\ while MaSfp and afp

decrease[ The neutral stability curves ~atten considerably
for wavenumbers less than afp\ as the frontier parameter
values "Bofp\ D	Crfp# are increased[ While the parameters\
MaS and D	\ allow for consideration of a multicomponent
~uid layer\ they are also applicable to the case of a singly
di}usive layer\ N � 0\ by treating MaS as Ma0 and setting
D	 � 0[

As in the case of stationary stability boundaries\ D1

has no e}ect on frontier point behavior for a ~at interface\
Cr � 9\ however this is not true when deformation is
included[ In their numerical analysis of a double di}usive
layer with deformation\ Char and Chiang ð11Ł examined
frontier point behavior at a Bo value of 9[0 and D1 � 0[
Extending this work\ we explore this behavior for D1

values more typically encountered in thermosolutal and
double di}usive systems using the exact solution\ eqn
"11#[ Frontier point curves for Ma1 values for 099 and
−099 are shown in Figs 1 and 2\ respectively[ Variations
of D1 dramatically a}ect the value of Crfp\ while Ma0fp

and afp are independent of its value[ The local maximum
value of Ma0 between the two critical modes decreases
"increases# for positive "negative# Ma1 and D1 decreases[
The ~attening e}ect of D1 is pronounced for positive
Ma1[ For values of D1 typical of thermosolutal systems\
D1 ³ 09−1\ the minima and local maximum becomes
visibly indistinguishable in Fig[ 1[ For negative Ma1\



J[R[L[ Skarda\ F[E[ McCau`han:Int[ J[ Heat Mass Transfer 31 "0888# 1276Ð1287 1282

Fig[ 0[ Stationary stability boundaries for di}erent values of Bo and "D	Crfp#[ Two curves shown are taken at frontier points associated
with Bo values of 9[94 and 9[49] ** Bo � 9[94\ "D	Crfp# � 3[103×09−3^ = = = = = = Bo � 9[94\ "D	Crfp# � 5[999×09−3^ *ÐŽÐ* Bo � 9[94\
"D	Crfp# � 2[999×09−3^ *ÐžÐ* Bo � 9[49\ "D	Crfp# � 3[345×09−2[

Fig[ 1[ The in~uence of D1 on frontier point stationary stability boundaries for Ma1 � 099\ Bo � 9[94\ afp � 0[864] ** D1 � 0[99\
Crfp � 3[101×09−3^ ! ! ! ! ! ! D1 � 9[49\ Crfp � 0[033×09−2^ * * * D1 � 9[14\ Crfp � 7[934×09−2^ *ÐžÐ* D1 � 9[12\
Crfp � 1[210×09−0[

Fig[ 2 reveals that the local maximum is bounded for
9 ³ D1 ³ 0[

In general\ values of Crfp are strongly in~uenced by
both D1 and Ma1 for the double di}usive problem[ Com!
paring Figs 1 and 2\ we _nd that the value of Crfp increases
with decreasing D1 for positive Ma1 and decreases with

negative Ma1 when Bo is constant[ In Fig[ 1\ stationary
onset occurs at a � 0[864 in a double di}usive layer with
D1 ³ 9[4 and Cr of 9[990\ and in the long wave length
limit\ a : 9\ for D1 � 0[ In a double di}usive layer\ with
D1\ Bo and Cr values of 9[94\ 9[4 and 9[990\ respectively\
stationary onset occurs at the _nite wavenumber\



J[R[L[ Skarda\ F[E[ McCau`han:Int[ J[ Heat Mass Transfer 31 "0888# 1276Ð12871283

Fig[ 2[ In~uence of D1 on frontier point stationary stability boundaries for Ma1 � −099\ Bo � 9[94\ afp � 0[864] ** D1 � 0\
Crfp � 3[101×09−3^ ! ! ! ! ! ! D1 � 9[4\ Crfp � 1[470×09−2^ = = = = = = D1 � 9[0\ Crfp � 0[860×09−2^ * * * D1 � 9[90\ 9[990\ 9\
Crfp � 0[750×09−3[

ac � 0[864 when Ma1 is positive\ Ma1 � 099[ However\
for negative Ma1 "Ma1 � −099 in Fig[ 2#\ Cr exceeds
Crfp and onset occurs in the long wave length limit\ a: 9[

The multicomponent problem was recast as a single
component problem leading to stationary stability solu!
tions\ eqns "11Ð14# with the aid of MaS and D	[ An inter!
esting characteristic of this reformulation is that it allows
frontier boundaries for an arbitrary number of stratifying
agencies\ and varying values of Dk and Mak to be
described by a single curve[ This is demonstrated in Fig[
3 where the frontier boundary spans over six orders of
magnitude in "Bo\ D	Cr# space[ The boundary directly
applies to the single component system by setting D	 to 0
and MaS to Ma0[ Along the frontier boundary\ two spa!
tial modes compete to destabilize the ~uid layer[ To the
left and above the frontier boundary in Fig[ 3\ onset of
instability is associated with the in_nitesimal wav!
enumber mode\ a : 9\ while to the right and below the
boundaries\ onset of convection is associated with _nite
wavenumber modes[ The frontier boundary for D	 × 9 is
described quite well by the _tted equation\
D	Cr:Bo0[90 � 9[99782\ for the range of Bo examined\
4×09−6 ¾ Bo ¾ 0[ Thus we _nd for D	Cr:Bo0[90 ×
9[99782 stationary onset is characterized by a large global
circulation cell\ a : 9\ while _nite sized convection cells
occur when the inequality is reversed[

While D	 can take on negative values when

MaS ³ s
N

k�1

"0−Dk#Mak\

our results suggest that MaSD	 must be positive for a

frontier point to exist[ Subject to the condition that
MaS=a:9 is a local minimum\ MaSD	 × 9 is necessary for
the existence of a frontier point\ as described in the
Appendix[ The extremum boundary given by eqn "A[6#
in the Appendix\ is shown in Fig[ 3 insert as a dotted
line[ Above and to the left of extremum boundary curve
"dotted line#\ MaS=a:9

is a minimum^ while below and to
the right of the boundary curve\ MaS=a:9

is a local
maximum[ As would be expected\ the frontier boundary
in Fig[ 3 lies above the extremum boundary curve guaran!
teeing that one local minima occurs in the long wave!
length limit\ a : 9[ The extremum boundary curve
approaches the frontier boundary with increasing Bo over
the range of Bo investigated\ 09−6 ¾ Bo ¾ 0[

Selected frontier point values shown in Figs 3 and 4
are given in Table 1[ For the single Bo value of 9[0\ Perez!
Garcia and Carneiro ð03Ł computed frontier points for
the singly di}usive layer varying the relative importance
of buoyancy and surface tension variation[ They found
that the minimum Cr value\ 7[36×09−2 at which a fron!
tier point existed occurred in the absence of buoyancy[
This frontier point which is identi_ed in Fig[ 3 was simi!
larly obtained in the double di}usive ~uid layer for
D1 � 0 ð11Ł[ Inspection of eqn "11# and Fig[ 3 reveal that
the stationary stability behavior of the singly di}usive
system ð03Ł and doubly di}usive system ð11Ł are equivalent
when D1 � 0[

The allowable values of Mak for which two spatial
modes coexist during stationary onset of convection are
also restricted by the possibility of oscillatory instability[
While our analysis is con_ned to stationary stability\
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Fig[ 3[ Frontier point boundaries in "Bo\ D	Cr# space] �ž represents frontier point identi_ed in ð03\ 11Ł[ Curve _t]
D	Cr � 7[82×09−2Bo0[90^ R � 9[88883[ The dotted line in the insert is the extremum boundary for MaS "a � 9#[ Above the dotted line\
MaS "a � 9# is a local maximum\ below this line it is a local minimum] ** frontier boundary^ ! ! ! ! ! ! extremum boundary for MaS

"a � 9#[

Fig[ 4[ Critical _nite wavenumber\ afp\ and MaS values associated with frontier boundaries] ** MaS ! ! ! ! ! ! afp[

oscillatory convective onset is possible when one or more
of the N!components with Dk ³ 0\ is stabilizing\ i[e[
Mak ³ 9[ Three types of frontier points\ characterized by
two coexisting modes that have been identi_ed in the
extensive analyses by Perez!Garcia and Carneiro ð03Ł and
Char and Chiang ð11Ł are] both stationary modes\ both

oscillatory modes\ or one stationary:one oscillatory
mode[ Our study has focused on the coexistence of
stationary modes for broad ranges of Bo\ Mak and Dk

values\ however\ the in~uences of these parameters on
the other two types of frontier points remain largely
unexplored for the multicomponent layer[
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Table 1
Selected frontier point parameter values corresponding to Figs
3 and 4

Bo "D	Cr#fp "MaS#fp afp

9[9990 7[264 09−6 68[595 0[882
9[990 7[264 09−5 68[487 0[882
9[90 7[273 09−4 68[403 0[878
9[94 3[101 09−3 68[033 0[864
9[0 7[362 09−3 67[566 0[845
0[9 8[475 09−2 58[433 0[439

Table 2
Bo and Cr values for common liquids

Pr Bo Cr D1

Water 4[72 9[9232 2[42E!95 *
Mercury 9[9137 9[9692 1[81E!94 *
Glycerin 5679 9[9389 9[99126 *
Silicone oil 094 9[0030 7[74E!94 *
WaterÐethanol0 6[6 9[93290 5[36E!95 9[997

"d � 9[4mm\ ` � 8[70 m s−1# property values chosen at approxi!
mately 299 K[
0 WaterÐethanol mixture 3) ethanol by weight[

Fig[ 5[ Neutral stability curves for double di}usive "waterÐethanol# system\ D	1 � 9[997\ Bo � 9[9329][ ** Ma1 � 49\ D	 � 9[263^
= = = = = = Ma1 � 68[5\ D	 � 9[992^ ! ! ! ! ! ! Ma1 � 099\ D	 � −9[141[

Bo and Cr values of common ~uids for a layer depth
of 9[4 mm and in a 0!` gravity environment are given in
Table 2[ For a singly di}usive layer\ values of the _rst
four ~uids are in agreement with those reported in ð00Ł[
Examination of Figs 3 and 4\ reveals that onset will occur
at _nite wavenumbers for water\ mercury\ and Silicone
oil\ while onset occurs at in_nitesimal wavenumber for
Glycerin[ In a reduced gravity environment of 09−4 `\ Bo
decreases by _ve orders of magnitude\ and Fig[ 3 indicates
that onset occurs at in_nitesimal wavenumber for all
Table 2 ~uids[ Evaluation of a frontier point behavior
for the water!ethanol thermosolutal system proceeds as
follows[ First "D	Cr#fp and "MaS#fp values of 2[51×09−3

and 68[1 corresponding to Bo � 9[9329 are obtained
from Figs 3 and 4\ respectively\ or computed from eqns
"11# and "13#[ The D	 values\ 9[262\ 9[99209 and −9[141
are computed using the three Ma1 values\ 49\ 68[5 and
099 given in Fig[ 5[ As indicated in the Appendix\ the
negative MaSD	 value immediately rules out a frontier
point for Ma1 � 099[ Onset occurs at a _nite wavenumber
as observed in Fig[ 5 for the stability curve associated
with Ma1 � 099[ The above condition\ requires that
Ma1 ³ 68[74 for a frontier point to occur[ For the remain!
ing two Ma1 values\ Crfp is greater than the Table 2 Cr
value\ therefore\ onset occurs at _nite wavenumber[ The
corresponding neutral stability curves at Crfp and Table
2 Cr values are also shown in Fig[ 5[ Re!evaluating for
09−4 `\ leads to convective onset at an in_nitesimal
wavenumber similar to the singly di}usive systems[
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3[ Conclusions

Traditional analyses have been used to examine the
stationary onset of convection in a multicomponent ~uid
layer due to surface tension variation along a free surface[
Deformation and gravity e}ects at the free surface have
been treated\ and mixed ~ux conditions have been applied
to the stratifying agency transport equations at both
boundaries[ An exact solution for neutral stability owing
to an exchange of stabilities\ and valid for N!stratifying
agencies\ has been obtained[ In addition\ the solution was
evaluated in the limit a : 9[ For two limiting sets of
boundary conditions examined\ the spatial shapes of vel!
ocity and the stratifying agencies are invariant with all
parameters except wavenumber[ The spatial shapes then
remain unchanged at stationary onset in a multi!
component system for any combination of Mak under
these circumstances[

The loci of points along which two modes can occur
simultaneously has been determined over a range of Bo\
09−6 ¾ Bo ¾ 0 for the limit ~ux conditions
"Nu"l#

k \ Nu"u#
k # :"�\ 9#[ Frontier points in "Bo\ Cr# space

are found to be functions of Mak and Dk but can be
presented as a single frontier boundary curve in "Bo\
D	Cr# space that accounts for di}erent values of Mak\ Dk

and Bo of a multicomponent system with arbitrary N!
stratifying agencies[ The frontier boundary was rep!
resented quite well by the empirical relation\
"D	Cr#fp �"Bofp#0[90 9[99782 for range of Bo speci_ed
above[ For Bo × 9\ the existence of a frontier point
requires that "MaSD	# be a positive value[
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Appendix

Assumptions and conditions related to the existence of
frontier points

Equation "11#\ which is the multicomponent stationary
neutral stability solution for ~ux conditions\
"Nu"l#

k \"Nu"u#
k # :"�\ 9#\ can be written in the following

form]

7a1 0
0
1

sinh 1a−a1
sinh1 a tanh a−a2¦

7a4Cr

a1¦Bo

� s
N

k�0

MakYk "A[0#

where]

Yk �

sinh1 a tanh a−a2¦
7a4CrDk

a1¦Bo

sinh1 a tanh a−a2¦
7a4Cr

a1¦Bo

"A[1#

In Section 1 the stratifying agency with the largest DÝ
was declared the k � 0 component[ Additionally\ DÝ k × 9
for all k\ therefore the di}usivity ratio\ Dk\ is bounded
within the range 9 ³ Dk ¾ 0[3 Bo − 9 to preclude the
RayleighÐTaylor instability ð00Ł[ Takashima ð02\ 03Ł has
theoretically examined the case of Bo ³ 9 for a single
component layer\ however\ such basic states have not
been observed experimentally\ and may not be physically
realizable as he ð03Ł notes as well[ Given these constraints
on Bo and Dk\ the left!hand side of eqn "A[0# is always
positive\ therefore\

s
N

k�0

MakYk − 9

and eqn "A[1# requires 9 ¾ Yk ¾ 0[ This leads to the
following inequalities\

s
N

k�0 bMakb− s
N

k�0 bMakYkb
and

s
N

k�0 bMakb− s
N

k�0 bMakDkb
which are useful in establishing property and parameter
bounds\ or estimating parameter values\ such as given
Mak\ Dk or MakDk[

In terms of MaS and D	 eqn "A[0# gives]

7a1 0
0
1

sinh 1a−a1
sinh1 a tanh a−a2¦

7a4Cr

a1¦Bo

� MaS"k0¦k1D	# "A[2#

where

k0 � 00¦
7a4Cr

"a1¦Bo#"sinh1 a tanh a−a2#1
−0

"A[3#

k1 � 0
"a1¦Bo#"sinh1 a tanh a−a2#

7a4Cr
¦01

−0

"A[4#

Again noting the earlier constraints on Bo and Dk\ eqn
"A[2# requires that MaS"k0¦k1D	# − 9\ while k0 and k1

are bounded as 9 ¾ k0\ k1 ¾ 0[ Consequently\ if D	 − 9\ it
follows that MaS × 9[ Although D	 can take on negative

3 This would not apply when cross!di}usion\ such as the Soret
or Dufour e}ect\ is important\ since negative cross!di}usive
coe.cients are possible ð7\ 13\ 15\ 16Ł[
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values\ our study of frontier boundaries is con_ned to\
D	 × 9\ thus also requiring MaS × 9[

Subject to the constraint that one minimum is located
in the long wavelength limit\ a : 9\ then the following
condition obtained from eqn "13# is necessary for the
existence of a frontier point]

MaSD	 � s
N

k�0

MakDk × 9[

Both Cr and Bo are taken to be positive quantities[ In the
long wavelength limit\ a : 9\ dMa:da=a:9 � 9\ demon!
strating that this limit is a local extremum for _nite values
of Cr and Bo[ The nature of the extremum^ maximum or
minimum\ is parameter dependent and is determined
from the sign of eqn "A[5#[

d1"MaS#:da1=a:9 �
019D	Cr¦13BoD	Cr−Bo1

89"D	Cr#1
"A[5#

The long wavelength limit\ a : 9\ is a local minimum
when 019D	Cr¦13Bo"D	Cr#−Bo1 × 9 and a local
maximum when 019D	Cr¦13Bo"D	Cr#−Bo1 ³ 9[
Accordingly\ the extremum boundary\ separating these
two extremum conditions is given by eqn "A[6# and
shown in Fig[ 3 insert[

D	Cr �
Bo1

019¦13Bo
"A[6#

Equation "A[6#\ which is determined directly from eqn
"11#\ is similar to the expression Takashima ð01Ł obtained
by expanding his single component solution in powers
of a[
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